

Rosary School \ Marj Elhamam

Name : _____
Subject: study sheet 3 Unit (3)

Date : / / 2025
Grade : 6 ()

- An **algebraic term** is made up of numbers (called coefficients), letters (called variables) and multiplication operation sign.

Examples : $3x$, $2y^2z$, $-4ab$, 10

Note: 10 is a **constant** algebraic expression.

- An **algebraic expression** is made up of one term or more and an addition operation signs.

Examples: $(3x + 2)$, $(4a - 7)$, $(2x + 3x + 5)$

Note: every algebraic term is an algebraic expression but not every algebraic expression is an algebraic term.

• Like Terms

Like terms are terms that have the same variable raised to the same power.

Examples of like terms: $3x$ and $5x$

$7a$ and $-2a$

$-2y^3$ and $5y^3$

Examples of unlike terms: $4x$ and $4y$ (different variables)

x^2 and x (different powers).

• Simplifying Like Terms When Adding and Subtracting

To simplify an algebraic expression, combine the numbers of the like terms.

Examples:

$$2x + 5x = 7x$$

$$8y - 3y = 5y$$

$$4a + 7b - 2a + 3b =$$

$$(4a - 2a) + (7b + 3b) =$$

$$2a + 10b$$

Be careful with positive and negative signs when simplifying.

Examples:

$$6x - 9x = -3x$$

$$-5a + 3a = -2a$$

- **Tips to Remember**

✓ Group like terms together before simplifying.

✓ Add or subtract the coefficient of each variable.

✓ Keep the sign (+ or -) between the terms.

Examples:

<u>Expression Form</u>	<u>Steps</u>	<u>Simplified Form</u>
1. $2x + 5x$	$2x + 5x = (2 + 5)x$	$7x$
2. $8y - 3y$	$8y - 3y = (8 - 3)y$	$5y$
3. $3x + 5 + 2x - 7$	$(3x + 2x) + (5 - 7)$	$5x - 2$
4. $4a + 7b - 2a + 3b$	$(4a - 2a) + (7b + 3b)$	$2a + 10b$

- **Simplifying When Multiplying Variables**

When we multiply variables, we multiply their coefficients and add the powers of the variables.

Example 1:

$$2x \times 3x = (2 \times 3) \times (x \times x) = 6x^2$$

Example 2:

$$4a \times 5a \times 2a = (4 \times 5 \times 2) \times (a \times a \times a) = 40a^3$$

Example 3:

$$3x \times 2y = 6xy$$

(different variables — just write them together)

Example 4:

$$-2a \times 3a^2 = (-2 \times 3) \times (a \times a^2) = -6a^3$$

Writing Algebraic Expressions

Words / Phrases	Operation	Example	Expression
Sum, total, more than, increased by	Addition (+)	5 more than x	$x + 5$
Difference, less than, decreased by	Subtraction (-)	7 less than x	$x - 7$
Times, product of, multiplied by	Multiplication (\times)	4 times x	$4x$
Divided by, quotient of	Division (\div)	x divided by 3	$x \div 3$ or $x/3$
Double	Multiplying by 2	double x	$2x$

Example 1:

“A number increased by 9” $\rightarrow x + 9$

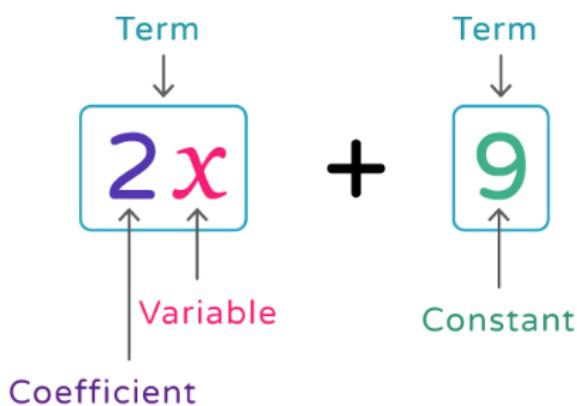
“Twice a number” $\rightarrow 2x$

“A number decreased by 4” $\rightarrow x - 4$

“The product of 3 and a number” $\rightarrow 3x$

“Half of a number” $\rightarrow x \div 2$ or $\frac{1}{2}x$

Example 2:


“A number doubled, then increased by 6” $\rightarrow 2x + 6$

“Three less than five times a number” $\rightarrow 5x - 3$

“A number divided by 2, then decreased by 7” $\rightarrow (x \div 2) - 7$

“Four more than twice a number” $\rightarrow 2x + 4$

Algebraic Expression

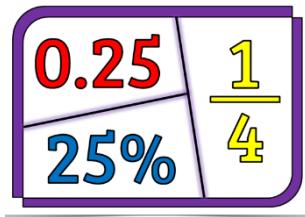
Teachers: Eman Nabas, Qusie Hijazeen

Name :

Date : / 11 / 2025

Subject: Study sheet (4)

Grade : 6 ()


To write a **decimal** as a **fraction**, follow these steps:

- 1) Look at the place value of the last digit (tenths, hundredths or thousandths).
- 2) Write the denominator of your fraction as 10 for the tenths place, 100 for the hundredths place or 1000 for the thousandths place.
- 3) Write all the digits without the decimal point as the numerator.
- 4) Cancel the fraction to its simplest form (if possible).

Example: Write these decimals as fractions in the simplest form if possible.

$$\text{a) } 1.07 = \frac{107}{100}$$

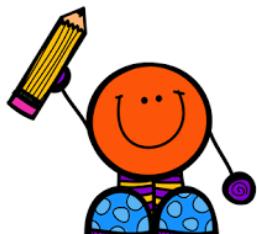
$$\text{b) } 0.8 = \frac{8 \div 2}{10 \div 2} = \frac{4}{5}$$

To write a **fraction** as a **decimal**, follow these steps:

Method 1: Long division

Example: Write these fractions as decimals.

$$\text{a) } \frac{3}{5} = 0.6$$


$$\begin{array}{r} 0.6 \\ \hline 5 \overline{)3.0} \\ -0 \\ \hline 30 \\ -30 \\ \hline 00 \end{array}$$

$$\text{b) } \frac{21}{20} = 1.05$$

$$\begin{array}{r} 1.05 \\ \hline 20 \overline{)21.0} \\ -20 \\ \hline 10 \\ -10 \\ \hline 00 \end{array}$$

$$\text{c) } \frac{2}{25} = 0.08$$

$$\begin{array}{r} 0.08 \\ \hline 25 \overline{)2.00} \\ -20 \\ \hline 00 \\ -200 \\ \hline 000 \end{array}$$

Method 2:

Step 1: Find a number you can multiply by the denominator to make it 10,100, or 1000

Step 2: Multiply both denominator and numerator by that number.

Step 3: Write down just the numerator, putting the decimal point in the correct spot (one space from the right-hand side for every zero in the denominator)

Example: Write these fractions as decimals.

$$a) \frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10} = 0.6$$

$$b) \frac{21}{20} = \frac{21 \times 5}{20 \times 5} = \frac{105}{100} = 1.05$$

$$c) \frac{2}{25} = \frac{2 \times 4}{25 \times 4} = \frac{8}{100} = 0.08$$

To write a **fraction** as a **percentage**:

Step 1: Write the fraction as an equivalent fraction having 100 in the denominator.

Step 2: Write down just the **numerator** with the " % " sign.

Example: Write $\frac{4}{50}$ as a percentage.

$$\frac{4 \times 2}{50 \times 2} = \frac{8}{100} = 8 \%$$

To write a **percentage** as a **decimal**:

Step 1: Write the percentage as a fraction.

Step 2: Divide the numerator by 100 by moving the decimal point two places to the left.

Example: Write these percentages as decimals.

$$a) 67\% = \frac{67}{100} = 0.67$$

$$b) 9\% = \frac{9}{100} = 0.09$$

Rosary School \ Marj Elhamam

Name : _____
Subject: study sheet (2)

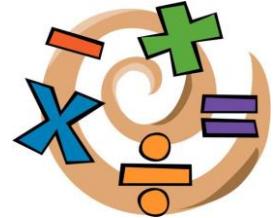
Date : / 10 / 2025
Grade : 6 ()

Squares and Cubes

Squares, Cubes, Square Roots & Cube Roots

❖ Squares

A square number is the result of multiplying a number by itself.


Examples:

$3 \times 3 = 9 \rightarrow 9$ is a square number.

$6 \times 6 = 36 \rightarrow 36$ is a square number.

Common Squares:

$1^2=1, 2^2=4, 3^2=9, 4^2=16, 5^2=25, 6^2=36, 7^2=49, 8^2=64, 9^2=81, 10^2=100$

❖ Cubes

A cube number is the result of multiplying a number by itself three times.

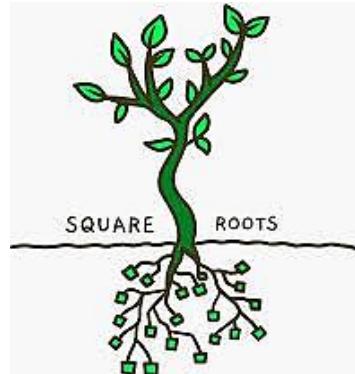
Examples:

$2 \times 2 \times 2 = 8 \rightarrow 8$ is a cube number.

$3 \times 3 \times 3 = 27 \rightarrow 27$ is a cube number.

Common Cubes:

$1^3=1, 2^3=8, 3^3=27, 4^3=64, 5^3=125, 6^3=216, 7^3=343, 8^3=512$


❖ Square Roots ($\sqrt{}$)

The square root of a number is a value that, when multiplied by itself, gives the number.

Examples:

$$\sqrt{9} = 3 \text{ because } 3 \times 3 = 9$$

$$\sqrt{25} = 5 \text{ because } 5 \times 5 = 25$$

Common Square Roots:

$$\sqrt{1} = 1$$

$$\sqrt{4} = 2$$

$$\sqrt{9} = 3$$

$$\sqrt{16} = 4$$

$$\sqrt{25} = 5$$

$$\sqrt{36} = 6$$

$$\sqrt{49} = 7$$

$$\sqrt{64} = 8$$

$$\sqrt{81} = 9$$

$$\sqrt{100} = 10$$

❖ Cube Roots ($\sqrt[3]{}$)

The cube root of a number is a value that, when multiplied by itself three times, gives that number.

Examples:

$$\sqrt[3]{8} = 2 \text{ because } 2 \times 2 \times 2 = 8$$

$$\sqrt[3]{27} = 3 \text{ because } 3 \times 3 \times 3 = 27$$

Common Cube Roots:

$$\sqrt[3]{1} = 1 \quad \sqrt[3]{8} = 2 \quad \sqrt[3]{27} = 3 \quad \sqrt[3]{64} = 4$$

$$\sqrt[3]{125} = 5$$

$$\sqrt[3]{216} = 6$$

$$\sqrt[3]{343} = 7$$