

Date: _____

Chapter 12, Lesson C: Divide 2-Digit Numbers by 2, 3, 4 and 5 (12.C.1)

- Division is dividing a number into equal parts or sharing it equally.
- A division number sentence consists of:

dividend ÷ **divisor** = **quotient**

$$24 \quad \div \quad 3 \quad = \quad 8$$

dividend \div **divisor** $=$ **quotient and remainder**

$$25 \quad \div \quad 3 \quad = \quad 3 \quad R \quad 1$$

- If the dividend is a **multiple** of the divisor, there will be no remainder.

$16 \div 2 = \underline{\quad}$

$21 \div 3 = \underline{\quad}$

$56 \div 8 = \underline{\quad}$

- If the dividend is **not a multiple** of the divisor, there will be a remainder.

We count back till we reach the closest multiple.

remainder = dividend - closest smaller multiple of the divisor

The remainder is always **less** than the divisor.

remainder < divisor

$$17 \div 2 = 8 \text{ R } 1$$

16 1 $1 < 2 \text{ so R} = 1$

$6 \div 2 = 8$

$$\begin{array}{r} 23 \\ \div 3 = \underline{\quad} R \underline{\quad} \\ \downarrow \\ \underline{\quad} \end{array}$$

- If the dividend is greater than the tenth multiple of the divisor, we break down the number into two multiples of the divisor.

$$\begin{array}{c} 48 \\ \diagdown \quad \diagup \\ 40 \quad 8 \end{array} \div 4 = 12$$

$$40 \div 4 = 10$$

$$8 \div 4 = 2$$

$$10 + 2 = 12$$

- We can solve the following using different number bonds.

$$\begin{array}{c} 85 \\ \diagdown \quad \diagup \\ 50 \quad ? \end{array} \div 5 = \underline{\quad}$$

$$\begin{array}{c} 85 \\ \diagdown \quad \diagup \\ 40 \quad ? \end{array} \div 5 = \underline{\quad}$$

$$\begin{array}{c} 85 \\ \diagdown \quad \diagup \\ ? \quad ? \end{array} \div 5 = \underline{\quad}$$

$$50 \div 5 = 10$$

$$40 \div 5 = \underline{\quad}$$

$$\underline{\quad}$$

$$\underline{\quad} \div 5 = \underline{\quad}$$

$$\underline{\quad}$$

$$\underline{\quad}$$

$$10 + \underline{\quad} = \underline{\quad}$$

$$\underline{\quad}$$

$$\underline{\quad}$$

- If the dividend is not a multiple of the divisor and greater than the 10th or 11th multiple of the divisor, we count back till we reach the closest multiple.

$$\begin{array}{c} 23 \\ \diagdown \quad \diagup \\ 22 \quad 1 \end{array} \div 2 = 11 \text{ R } 1$$

$1 < 2 \text{ so R} = 1$

$$22 \div 2 = 11$$

$$\begin{array}{c} 54 \\ \diagdown \quad \diagup \\ 50 \quad 4 \end{array} \div 5 = \underline{\quad}$$

$4 < 5 \text{ so R} = \underline{\quad}$

23 is an odd number so it is not a multiple of 2.
Multiples of 2 are all even numbers.
We go back to the 2 times table.

$$10 \times 2 = 20$$

$$11 \times 2 = 22$$

$12 \times 2 = 24$ 23 is between 22 and 24.
We choose the smaller multiple which is 22: $11 \times 2 = 22$
The difference between 23 and 22 is 1. So the remainder is 1.

54 is not a multiple of 5. Multiples of 5 have 0 or 5 in the ones place. We go back to 5 times table.

$$10 \times 5 = 50$$

$11 \times 5 = 55$ 54 is between 50 and 55.
We choose the smaller multiple which is 50: $10 \times 5 = 50$
The difference between 54 and 50 is 4. So the remainder is 4.

More examples:

$$\begin{array}{c} 29 \\ \diagdown \quad \diagup \\ 27 \quad 2 \end{array} \div 3 = \underline{\hspace{2cm}}$$

$2 < 3$ so $R = \underline{\hspace{2cm}}$

$27 \div 3 = \underline{\hspace{2cm}}$

$$\begin{array}{c} 33 \\ \diagdown \quad \diagup \\ \quad \quad \end{array} \div 4 = \underline{\hspace{2cm}}$$

$\underline{\hspace{2cm}}$

29 is not a multiple of 3. We go back to 3 times table.

$$8 \times 3 = 24$$

$$9 \times 3 = 27$$

$10 \times 3 = 30$ 29 is between 27 and 30.
We choose the smaller multiple which is 27:
 $9 \times 3 = 27$
The difference between 29 and 27 is 2. So the remainder is 2.

33 is an odd number so it is not a multiple of 4.
Multiples of 4 are all even numbers.
We go back to the 4 times table.

$$8 \times 4 = 32$$

$9 \times 4 = 36$ 33 is between 32 and 36.
We choose the smaller multiple which is 32: $8 \times 4 = 32$
The difference between 33 and 32 is 1. So the remainder is 1.