

Marshall Cavendish Cambridge Primary Mathematics (2nd edition)
Stage 6

Suggested Answers

Chapter 1 Place Value

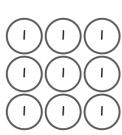
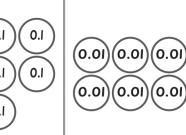
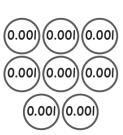
(The following content has not been through the Cambridge Assessment International Education endorsement process.)

Student's Book

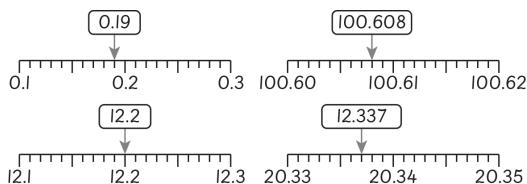
Section A

- Let's Learn

Pages 3-4




(a) In 0.001, the digit 1 is in the thousandths place.
1 one and 3 thousandths = 1.003

(c) $3 + 0.1 + 0.04 + \underline{0.002} = 3.142$.
In the number, the digit 2 is in the thousandths place.


- Let's Practise

Pages 5-6

1. 8; 8 thousandths; 0.008

1s		$\frac{1}{10}$ s	$\frac{1}{100}$ s	$\frac{1}{1000}$ s
9	.	7	6	8

2. (a) 1; 9
(b) 1; 6; 8
(c) 2.2
(d) 0.33

3. $-0.007; 0.004$
Answers vary. For example: Count 7 markings on the left of 0 to get -0.007 and count 4 markings on the right of 0 to get 0.004 .

4. TWM.01: Specialising
Answers vary. For example:
Option 1: Onions, potatoes, flour, papaya and apples
Option 2: Watermelon, onions, flour and papaya

Section B

- Let's Learn

Pages 8-9

(a) $15 \times 1000 = \underline{15\,000}$
The total mass of 15 boxes of sauce is 15 000 g.
 $986 \div 10 = \underline{98.6}$

98 sachets of sauce can be made.

$$986 \div 100 = \underline{9.86}$$

9 bottles can be made.

(b) $4.38 \times 1000 = \underline{4380}$

The total mass of the 1000 balls is 4380 g.

- Let's Practise

Page 10

1. (a) 10.23
(b) 0.474
(c) 12 410
(d) 2.5
(e) 20 045
(f) 0.32

2. (a) 0.029
(b) 13.002
(c) 101
(d) 3239

3. TWM.08: Improving

No. Ralph is not correct.

$$45.93 \times 1000 = 45\ 930 \text{ g, which is not the same as } 45\ 039 \text{ g.}$$

Ralph should say: 1000 golf balls have a total mass of 45 930 g.

4. (a) $453.9 - 48.9 = 405 \text{ kg}$

$$\text{Mass of each ball bearing} = 405 \div 1000 = 0.405 \text{ kg}$$

- (b) Mass of 100 ball bearings = $0.405 \times 100 = 40.5 \text{ kg}$

$$\text{Mass of empty box} = 48.9 - 40.5 = 8.4 \text{ kg}$$

Section C

- Let's Practise

Page 14

1. (a) 2
(b) 3
(c) 7
(d) 10

2. (a) 0.7
(b) 1.9
(c) 2.6
(d) 5.0

TWM.06: Classifying

b; c; a; d

3. Total mass

$$= 1.39 + 1.59$$

$$= 2.98 \text{ kg}$$

2.98 kg when rounded to the nearest tenth is 3.0 kg.

4. (a) TWM.04: Convincing

When we round a number to the nearest whole number, we look at the tenths digit. If it is 5 tenths or more, we round up. So, the digit at the tenths place must be at least 5 and the least possible distance is 1.5 km.

- (b) $2.49 + 5.44 = 7.93 \text{ km}$

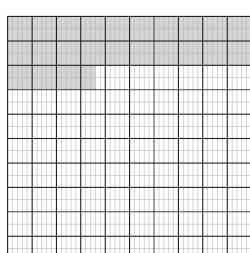
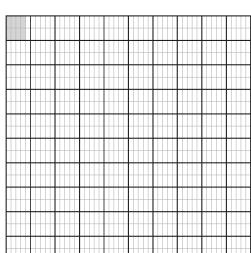
7.93 km when rounded to the nearest tenth is 7.9 km.

- (c) $5.35 - 2.49 = 2.86 \text{ km}$

2.86 km when rounded to the nearest tenth is 2.9 km.

TWM.07: Critiquing

Answers vary. For example:

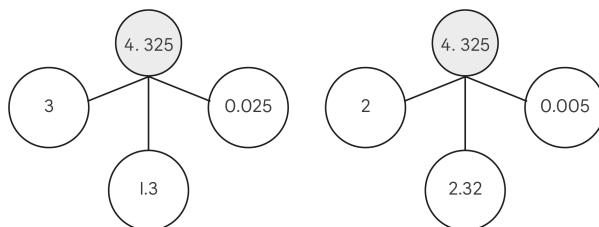


Difference: I find the greatest and least possible distances to 2 decimal places while my partner finds the distances to 3 decimal places.

Similarity: After finding the numbers with 2 decimal places or 3 decimal places, the rounded value is the same.

Activity Book

Section A

1.


2. (a) 0.005; 4.325

(b)

1s	$\frac{1}{10}$ s	$\frac{1}{100}$ s	$\frac{1}{1000}$ s
(1) (1) (1) (1)	(0.1) (0.1) (0.1)	(0.01) (0.01)	(0.001) (0.001) (0.001) (0.001) (0.001)

(c) TWM.01: Specialising

Answers vary. For example:

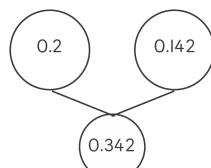
3. 0.202

4. (a) 1 hundredth + 2 thousandths = 0.012

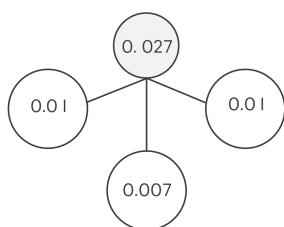
(b) $12.504 = 1$ ten + 2 ones + 5 tenths + 4 thousandths

(c) $45 + 0.04 + 0.006 = \underline{45.046}$

(d) $128.105 = 100 + 28 + \underline{0.105}$


5. (a)

(b) TWM.01: Specialising


Answers vary. For example: -0.004.

6.

0.2 and 0.142 add up to 0.342, so the total distance is 0.342 m.

7.

0.027 can be regrouped as $0.01 + 0.007 + 0.01$, so the mass of the third strawberry is 0.01 kg.

8. TWM.04: Convincing

No, he is not. It is smaller only when the number is positive. If the number is negative, the value of the digit in the thousandths place is greater than the value of the digit in the hundredths place.

Section B

1. (a) $72 \times 1000 = 72\,000$

When multiplying by 1000, the digits move 3 places to the left.

(b)

10s	1s	$\frac{1}{10}s$	$\frac{1}{100}s$	$\frac{1}{1000}s$
1	6			
0	0	1	6	

$16 \div 1000 = 0.016$

When dividing by 1000, the digits move 3 places to the right.

(c) $5.1 \times 1000 = 5100$

2.

\times	10	100	1000
13	130	1300	13 000
1.6	16	160	1600
3.27	32.7	327	3270
0.481	4.81	48.1	481

\div	10	100	1000
6	0.6	0.06	0.006
23	2.3	0.23	0.023
370	37	3.7	0.37
781	78.1	7.81	0.781

3.

Statement	Correction
a $88.44 \times 10 = 8844$	$88.44 \times 100 = 8844$ or $88.44 \times 10 = 884.4$
b $111.2 \div 100 = 1.112$	No errors
c $2.356 \times 1000 = 2356\,000$	$2.356 \times 1000 = 2356$ or $2356 \times 1000 = 2\,356\,000$
d $132 \div 10 = 0.132$	$132 \div 1000 = 0.132$ or $132 \div 10 = 13.2$

4. $2350 \div 1000 = 2.35$ g

The mass of one capsule is 2.35 g.

5. Mass of one parcel
 $= 1567 \div 1000$
 $= 1.567 \text{ kg}$
 Total mass of 100 parcels
 $= 1.567 \times 100$
 $= 156.7 \text{ kg}$

6. $1000 \times 25 = 25000$
 He exchanged 25 000 baht.
 $25000 - 15000 = 10000$
 $10000 \times 0.04 = 400$
 Minho got S\$400 in the end.

Section C

1. 6; 7; 6.3; 6.5; 6.8

2.

Runner	Timing (in min)	Nearest whole number	Nearest tenth
Henna	15.52	16	15.5
James	16.25	16	16.3
Anna	17.56	18	17.6
Harry	20.03	20	20.0

3. TWM.01: Specialising

Answers vary. For example:

Richard's mass could be 56.57 kg.

Your answer could be different from your friend's, but the answers after rounding off are the same.

4. TWM.01: Specialising

Answers vary. For example:

$2.74 + 3.18 = 5.92$

2.74 when rounded to the nearest tenth is 2.7.

3.18 when rounded to the nearest whole number is 3.

5. TWM.01: Specialising

Answers vary. For example:

Ali has \$5.02 and Maya has \$4.98.